Differentiation of Th Subsets Inhibited by Nonstructural Proteins of Respiratory Syncytial Virus Is Mediated by Ubiquitination

نویسندگان

  • Ling Qin
  • Dan Peng
  • Chengping Hu
  • Yang Xiang
  • Yigang Zhou
  • Yurong Tan
  • Xiaoqun Qin
چکیده

Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, constitutes an important risk factor for the development of subsequent asthma. However, the mechanism underlying RSV-induced asthma is poorly understood. Viral non-structural proteins NS1 and NS2 are critically required for RSV virulence; they strongly suppress IFN-mediated innate immunity of the host cells. In order to understand the effects of NS1 and NS2 on differentiation of Th subsets, we constructed lentiviral vectors of NS1 or NS2 to infect 16 HBE and analyzed the expression of HLA-DR, CD80 and CD86 and differentiation of Th1, Th2 and Th17 by Flow Cytometric Analysis and real-time PCR. The results showed that NS1 inhibited expression of HLA-DR, CD80 and CD86 and differentiation of Th1, Th2 and Th17 lymphocytes, which could be reversed by deleting elongin C binding domain. NS2 inhibited the differentiation of Th2 and Th17, which was reversed by proteasome inhibitors of PS-341. Our results indicated that NS1 inhibited the differentiation of T lymphocytes through its mono-ubiquitination to interacted proteins, while NS2 inhibited differentiation of Th2 and Th17 through ubiquitin-proteasome pathway, which may be related with the susceptibility to asthma after RSV infection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leptin Is Oversecreted by Respiratory Syncytial Virus-Infected Bronchial Epithelial Cells and Regulates Th2 and Th17 Cell Differentiation

Background: Infection of human bronchial epithelial cells (hBECs) with respiratory syncytial virus (RSV) has been shown to induce a Th lymphocyte subset drift, e.g. enhanced differentiation of Th2 and Th17 subsets, which is a classic characteristic of asthma. However, the molecules responsible for the drift in Th subsets remain unknown. This study aims to determine the expression of leptin in R...

متن کامل

Leptin Is Oversecreted by Respiratory Syncytial Virus-Infected Bronchial Epithelial Cells and Regulates Th2 and Th17 Cell Differentiation.

BACKGROUND Infection of human bronchial epithelial cells (hBECs) with respiratory syncytial virus (RSV) has been shown to induce a Th lymphocyte subset drift, e.g. enhanced differentiation of Th2 and Th17 subsets, which is a classic characteristic of asthma. However, the molecules responsible for the drift in Th subsets remain unknown. This study aims to determine the expression of leptin in RS...

متن کامل

Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins

Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implica...

متن کامل

Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells.

Human respiratory syncytial virus (RSV) is the most important agent of serious pediatric respiratory tract disease worldwide. One of the main characteristics of RSV is that it readily reinfects and causes disease throughout life without the need for significant antigenic change. The virus encodes nonstructural protein 1 (NS1) and NS2, which are known to suppress type I interferon (IFN) producti...

متن کامل

The Frequency Distribution of Parainfluenza, Adeno and Respiratory Syncytial Virus Infections in Children below 2 Years Old with Bronchiolititis, by Multiplex Polymerase Chain Reaction Method, Afzalipoor Hospital, Kerman, 2006

Background & Aims: Acute respiratory infections are common cause of mortality during childhood. This study was designed to determine the incidence of adenovirus, parainfluenza virus and respiratory syncytial virus in respiratory infections by Multiplex PCR method. Methods: This study included 168 children under 2 years of age with clinical diagnosis of bronchiolitis. Nasopharyngeal specimens we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014